Language Evolution by Iterated Learning With Bayesian Agents

نویسندگان

  • Thomas L. Griffiths
  • Michael L. Kalish
چکیده

Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute a posterior distribution over languages by combining a prior (representing their inductive biases) with the evidence provided by linguistic data. We show that when learners sample languages from this posterior distribution, iterated learning converges to a distribution over languages that is determined entirely by the prior. Under these conditions, iterated learning is a form of Gibbs sampling, a widely-used Markov chain Monte Carlo algorithm. The consequences of iterated learning are more complicated when learners choose the language with maximum posterior probability, being affected by both the prior of the learners and the amount of information transmitted between generations. We show that in this case, iterated learning corresponds to another statistical inference algorithm, a variant of the expectation-maximization (EM) algorithm. These results clarify the role of iterated learning in explanations of linguistic universals and provide a formal connection between constraints on language acquisition and the languages that come to be spoken, suggesting that information transmitted via iterated learning will ultimately come to mirror the minds of the learners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thomas’ theorem meets Bayes’ rule: a model of the iterated learning of language

We develop a Bayesian Iterated Learning Model (BILM) that models the cultural evolution of language as it is transmitted over generations of learners. We study the outcome of iterated learning in relation to the behavior of individual agents (their biases) and the social structure through which they transmit their behavior. BILM makes individual learning biases explicit and offers a direct comp...

متن کامل

A Bayesian view of language evolution by iterated learning

Models of language evolution have demonstrated how aspects of human language, such as compositionality, can arise in populations of interacting agents. This paper analyzes how languages change as the result of a particular form of interaction: agents learning from one another. We show that, when the learners are rational Bayesian agents, this process of iterated learning converges to the prior ...

متن کامل

The evolution of frequency distributions: relating regularization to inductive biases through iterated learning.

The regularization of linguistic structures by learners has played a key role in arguments for strong innate constraints on language acquisition, and has important implications for language evolution. However, relating the inductive biases of learners to regularization behavior in laboratory tasks can be challenging without a formal model. In this paper we explore how regular linguistic structu...

متن کامل

Revealing Priors on Category Structures Through Iterated Learning

We present a novel experimental method for identifying the inductive biases of human learners. The key idea behind this method is simple: we use participants’ responses on one trial to generate the stimuli they see on the next. A theoretical analysis of this “iterated learning” procedure, based on the assumption that learners are Bayesian agents, predicts that it should reveal the inductive bia...

متن کامل

Iterated Learning of Multiple Languages from Multiple Teachers

Language learning is an iterative process, with each learner learning from other learners. Analysis of this process of iterated learning with chains of Bayesian agents, each of whom learns from one agent and teaches the next, shows that it converges to a distribution over languages that reflects the inductive biases of the learners. However, if agents are taught by multiple members of the previ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cognitive science

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2007